日志
full GC触发的条件
除直接调用System.gc外,触发Full GC执行的情况有如下四种。
- 旧生代空间不足
旧生代空间只有在新生代对象转入及创建为大对象、大数组时才会出现不足的现象,当执行Full GC后空间仍然不足,则抛出如下错误:
java.lang.OutOfMemoryError: Java heap space
为避免以上两种状况引起的FullGC,调优时应尽量做到让对象在Minor GC阶段被回收、让对象在新生代多存活一段时间及不要创建过大的对象及数组。 - Permanet Generation空间满
PermanetGeneration中存放的为一些class的信息等,当系统中要加载的类、反射的类和调用的方法较多时,Permanet Generation可能会被占满,在未配置为采用CMS GC的情况下会执行Full GC。如果经过Full GC仍然回收不了,那么JVM会抛出如下错误信息:
java.lang.OutOfMemoryError: PermGen space
为避免Perm Gen占满造成Full GC现象,可采用的方法为增大Perm Gen空间或转为使用CMS GC。 - CMS GC时出现promotion failed和concurrent mode failure
对于采用CMS进行旧生代GC的程序而言,尤其要注意GC日志中是否有promotion failed和concurrent mode failure两种状况,当这两种状况出现时可能会触发Full GC。
promotionfailed是在进行Minor GC时,survivor space放不下、对象只能放入旧生代,而此时旧生代也放不下造成的;concurrent mode failure是在执行CMS GC的过程中同时有对象要放入旧生代,而此时旧生代空间不足造成的。
应对措施为:增大survivorspace、旧生代空间或调低触发并发GC的比率,但在JDK 5.0+、6.0+的版本中有可能会由于JDK的bug29导致CMS在remark完毕后很久才触发sweeping动作。对于这种状况,可通过设置-XX:CMSMaxAbortablePrecleanTime=5(单位为ms)来避免。 - 统计得到的Minor GC晋升到旧生代的平均大小大于旧生代的剩余空间
这是一个较为复杂的触发情况,Hotspot为了避免由于新生代对象晋升到旧生代导致旧生代空间不足的现象,在进行Minor GC时,做了一个判断,如果之前统计所得到的Minor GC晋升到旧生代的平均大小大于旧生代的剩余空间,那么就直接触发Full GC。
例如程序第一次触发MinorGC后,有6MB的对象晋升到旧生代,那么当下一次Minor GC发生时,首先检查旧生代的剩余空间是否大于6MB,如果小于6MB,则执行Full GC。
当新生代采用PSGC时,方式稍有不同,PS GC是在Minor GC后也会检查,例如上面的例子中第一次Minor GC后,PS GC会检查此时旧生代的剩余空间是否大于6MB,如小于,则触发对旧生代的回收。
除了以上4种状况外,对于使用RMI来进行RPC或管理的Sun JDK应用而言,默认情况下会一小时执行一次Full GC。可通过在启动时通过- java-Dsun.rmi.dgc.client.gcInterval=3600000来设置Full GC执行的间隔时间或通过-XX:+ DisableExplicitGC来禁止RMI调用System.gc。
在Java中,常用的线程通信方式有两种,分别是利用Monitor实现线程通信、利用Condition实现线程通信。线程同步是线程通信的前提,所以究竟采用哪种方式实现通信,取决于线程同步的方式。
如果是采用synchronized关键字进行同步,则需要依赖Monitor(同步监视器)实现线程通信,Monitor就是锁对象。在synchronized同步模式下,锁对象可以是任意的类型,所以通信方法自然就被定义在Object类中了,这些方法包括:wait()、notify()、notifyAll()。一个线程通过Monitor调用wait()时,它就会释放锁并在此等待。当其他线程通过Monitor调用notify()时,则会唤醒在此等待的一个线程。当其他线程通过Monitor调用notifyAll()时,则会唤醒在此等待的所有线程。
JDK 1.5新增了Lock接口及其实现类,提供了更为灵活的同步方式。如果是采用Lock对象进行同步,则需要依赖Condition实现线程通信,Condition对象是由Lock对象创建出来的,它依赖于Lock对象。Condition对象中定义的通信方法,与Object类中的通信方法类似,它包括await()、signal()、signalAll()。通过名字就能看出它们的含义了,当通过Condition调用await()时当前线程释放锁并等待,当通过Condition调用signal()时唤醒一个等待的线程,当通过Condition调用signalAll()时则唤醒所有等待的线程。
== 和 equals():
(1)“==” 用于比较基本数据类型时比较的是值,用于比较引用类型时比较的是引用指向的地址。
(2)Object 中的equals() 与 “==” 的作用相同,但String类重写了equals()方法,比较的是对象中的内容。
1、在java中,对象的内存在哪个时刻回收,取决于垃圾回收器何时运行。
2、一旦垃圾回收器准备好释放对象占用的存储空间,将首先调用其finalize()方法, 并且在下一次垃圾回收动作发生时,才会真正的回收对象占用的内存(《java 编程思想》)
3、在C中,对象的内存在哪个时刻被回收,是可以确定的,在C中,析构函数和资源的释放息息相关,能不能正确处理析构函数,关乎能否正确回收对象内存资源。
在java中,对象的内存在哪个时刻回收,取决于垃圾回收器何时运行,在java中,所有的对象,包括对象中包含的其他对象,它们所占的内存的回收都依靠垃圾回收器,因此不需要一个函数如C++析构函数那样来做必要的垃圾回收工作。当然存在本地方法时需要finalize()方法来清理本地对象。在《java编程思想》中提及,finalize()方法的一个作用是用来回收“本地方法”中的本地对象
1.Statement、PreparedStatement和CallableStatement都是接口(interface)。
2.Statement继承自Wrapper、PreparedStatement继承自Statement、CallableStatement继承自PreparedStatement。
3.
Statement接口提供了执行语句和获取结果的基本方法;
PreparedStatement接口添加了处理 IN 参数的方法;
CallableStatement接口添加了处理 OUT 参数的方法。
4.
a.Statement:
普通的不带参的查询SQL;支持批量更新,批量删除;
b.PreparedStatement:
可变参数的SQL,编译一次,执行多次,效率高;
安全性好,有效防止Sql注入等问题;
支持批量更新,批量删除;
c.CallableStatement:
继承自PreparedStatement,支持带参数的SQL操作;
支持调用存储过程,提供了对输出和输入/输出参数(INOUT)的支持;
Statement每次执行sql语句,数据库都要执行sql语句的编译 ,
最好用于仅执行一次查询并返回结果的情形,效率高于PreparedStatement。
PreparedStatement是预编译的,使用PreparedStatement有几个好处
- 在执行可变参数的一条SQL时,PreparedStatement比Statement的效率高,因为DBMS预编译一条SQL当然会比多次编译一条SQL的效率要高。
- 安全性好,有效防止Sql注入等问题。
- 对于多次重复执行的语句,使用PreparedStament效率会更高一点,并且在这种情况下也比较适合使用batch;
- 代码的可读性和可维护性。
transient使用小结
一旦变量被transient修饰,变量将不再是对象持久化的一部分,该变量内容在序列化后无法获得访问。
transient关键字只能修饰变量,而不能修饰方法和类。
被transient关键字修饰的变量不再能被序列化,一个静态变量不管是否被transient修饰,均不能被序列化。
使用泛型的好处
1,类型安全。 泛型的主要目标是提高 Java 程序的类型安全。通过知道使用泛型定义的变量的类型限制,编译器可以在一个高得多的程度上验证类型假设。没有泛型,这些假设就只存在于程序员的头脑中(或者如果幸运的话,还存在于代码注释中)。
2,消除强制类型转换。 泛型的一个附带好处是,消除源代码中的许多强制类型转换。这使得代码更加可读,并且减少了出错机会。
3,潜在的性能收益。 泛型为较大的优化带来可能。在泛型的初始实现中,编译器将强制类型转换(没有泛型的话,程序员会指定这些强制类型转换)插入生成的字节码中。但是更多类型信息可用于编译器这一事实,为未来版本的 JVM 的优化带来可能。由于泛型的实现方式,支持泛型(几乎)不需要 JVM 或类文件更改。所有工作都在编译器中完成,编译器生成类似于没有泛型(和强制类型转换)时所写的代码,只是更能确保类型安全而已。
所以泛型只是提高了数据传输安全性,并没有改变程序运行的性能
OSPF:开放式最短路径优先(英语:Open Shortest Path First,缩写为 OSPF)是一种基于IP协议的路由协议
ICMP:互联网控制消息协议(英语:Internet Control Message Protocol,缩写:ICMP)。它用于网际协议(IP)中发送控制消息,提供可能发生在通信环境中的各种问题反馈。
RAFT:RAFT是一种更为简单方便易于理解的分布式算法,主要解决了分布式中的一致性问题。
SCSI:小型计算机系统接口(SCSI,Small Computer System Interface)是一种用于计算机及其周边设备之间(硬盘、软驱、光驱、打印机、扫描仪等)系统级接口的独立处理器标准。
CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack/session riding,缩写为:CSRF/XSRF。
你这可以这么理解CSRF攻击:攻击者盗用了你的身份,以你的名义发送恶意请求。
其原理是攻击者构造网站后台某个功能接口的请求地址,诱导用户去点击或者用特殊方法让该请求地址自动加载。用户在登录状态下这个请求被服务端接收后会被误以为是用户合法的操作。对于 GET 形式的接口地址可轻易被攻击,对于 POST 形式的接口地址也不是百分百安全,攻击者可诱导用户进入带 Form 表单可用POST方式提交参数的页面。
HTTP Referer是header的一部分,当浏览器向web服务器发送请求的时候,会带上Referer,通过验证Referer,可以判断请求的合法性,如果Referer是其他网站的话,就有可能是CSRF攻击,则拒绝该请求。